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Simulating the Physical Effects of

Watercolor Painting

Among drawing mediums to recreate digitally, watercolor is unique because of how it

interacts with water and paper. Pigments flow and are carried by water and are

affected by the amount of water. Paper texture and thickness also matter as

capillary action diffuses water and pigments that are absorbed in paper. Watercolor

changes and spreads over time, and its final image reveals its unique motion.

For my final project, I attempted to implement the watercolor simulation techniques

described in Curtis et al. 1997, Computer-Generated Watercolor. The paper presents

the following watercolor effects (a-f):

Drybrush (a), edge darkening (b), backruns (c), granulation (d), flow effects (e), and glazing (f).

From Curtis et al. 1997.

My paper implements a subset of the techniques described in the paper. Dry-brush

effects were not implemented as it requires additional simulation of brush stroke

textures and dynamics, and is best used with user interaction (out of scope of this

project). I wanted to focus on the watercolor’s unique fluid properties.

1. Edge darkening occurs when too much water and surface tension causes

the pigment to flow and accumulate at the edges of the wet area.

2. Backruns (a.k.a. blooms, splotchiness) occur when excess water flows

back into an uneven damp region and creates splotchy branching structures.

3. Granulation occurs when the natural properties of watercolor pigment

cause particles to clump and settle unevenly.

4. General flow effects are the overall wet-on-wet effects of pigments flowing

on textured paper. It creates the soft, feathery edges that flow in the direction

of the water flow.

5. Glazing describes the color blending when multiple pigments mix or overlap.

I was able to partially recreate all the five effects described above with varying

levels of success. While overall watercolor dynamics were composed of multiple

components, I found that the implementation of general flow effects (wet-on-wet

flows) contributed most to its realistic animation.
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1. Implementation

I have implemented the three-layer model of simulating watercolors as described in

Curtis et al. The layers are as follows: 1) the shallow-water layer, where water flows

above the surface of the paper, 2) the pigment-deposition layer, where pigment is

absorbed by/desorbed from the paper, and 3) the capillary layer, where water is

absorbed via capillary action.

The three-layer model presented in the paper.

In watercolor painting, the texture of the paper itself affects the fluid flow and

effects like backruns and granulation. The paper procedurally generates paper

textures using pseudo-random processes; because I wanted to focus on implementing

the flow of the watercolor itself rather than find myself in a rabbit hole of

paper-texture generation, I skipped this step. Paper textures are stored as grayscale

.ppm images, which my program then reads in.

Overall more time was spent setting up data structures than in implementing the

techniques from the paper. I implemented a custom staggered grid class,

StaggeredGrid.h/cpp, which allows getting/setting in half (+/- 0.5) grid increments. I

also implemented fast Gaussian blur functions which approximate a Gaussian blur

via three linear-time box blur operations. While not currently editable, pigment

information is stored in a vector to allow for user-definable colors in the future.

To simulate the three layers and pigment movement between them, my program’s

function structure matches Curtis et al’s. The functions are as follows.

1. MoveWater() Simulates the shallow-water layer and updates water

velocities. Velocities are represented in two staggered grids: one in the x

direction and in the y direction. We solve forward integration using Euler’s

method, and dynamically set timestep depending on the velocity.

2. MovePigment() Simulates pigment movement in the shallow-water layer.

Pigment is moved by the velocity of the water.

3. TransferPigment() Simulates the adsorption and desorption of pigments

with the paper. This also achieves granulation effects.

4. SimulateCapillaryFlow() Simulates backruns and capillary flow effects,

allowing water to be diffused through the paper.
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2. Results

First, paper textures are uploaded as grayscale .PPM image. Paper textures affect

the flow of the watercolor; higher contrast means rougher material.

Below, we set a square of red pigment in the center with the wet area defined as a

larger invisible square surrounding it. The images below are three frames taken

from a full simulation (video link provided). General flow effects spread the pigment

out, and in the second image we see that the pigment has begun to reach the

boundaries of the wet area. In the third image, we observe pigment pooling at the

edges of the wet area (edge darkening). Some granulation is achieved; the red

pigment spreads unevenly and leaves splotchy traces. Capillary effects cause the

pigment to spread slightly beyond the defined wet area, although not quite

realistically. Flow effects and blooming can be seen in the full video, linked

underneath.

https://www.youtube.com/watch?v=ic56LUOM6j0
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Next, we demonstrate two differently-colored pigments interacting with each other.

The two colors here are blended by simple linear interpolation (this works, but it’s

not physically accurate—we would have to implement the KM model). Where the

blue and red pigment touch forms a murky purple, whereas in reality, it would form

a similarly-saturated purple. The future work section discusses the KM model, a

more realistic color model; I did not implement that in this project. Note that the

paper texture is not shown, this is for clarity.

https://www.youtube.com/watch?v=JjEhPoaxUZs

Everything we’re seeing is running in real-time, so let’s add some user interaction!

The next video starts with a “t” of blue pigment, and the user can click to add a

small amount of red pigment, which gets dispersed and mixed with the blue.

https://www.youtube.com/watch?v=1ohEUe2xzrA
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3. Limitations

Overall, I am pretty happy with the results I was able to achieve. However, I was

unable to get capillary effects fully working, and I was unable to debug it not

working (it had something to do with my forward integration shooting values to

infinity—classic). I believe this was mostly due to the paper’s lack of clarity.

Although seemingly-detailed pseudocode of the functions were provided, there were

glaring omissions: the capillary layer procedure (SimulateCapillaryFlow) introduced

many constants (absorption/diffusion rate, carrying capacity, etc) which the paper

never specified; this meant I had to guess these constants without understanding

how they affected the simulation. I also had to double check with a patent I found of

the same procedure (https://patents.google.com/patent/US6198489B1/en) as there

were discrepancies even in implementation details, such as flipped signs, conflicting

variable names, and different function calling structures. Because of these

difficulties, I was not able to get my program to work at the same level as the

paper’s. This is why the recorded demos in the results section don’t look perfect—the

simulation would often slow down after running for too long.

4. Future Work

There are three main parts of the project that can be improved with future work,

besides fixing the capillary layer.

First, general efficiency improvements. Access patterns should be studied and data

structures may need to be refactored to improve array lookup times. Currently,

pigments details are stored in a struct; each struct also contains arrays which

represent pigment concentration. There are many instances in the program where it

loop through the multiple pigments to render a single pixel of the paper; to reduce

cache misses, it would be far better to solve for one pigment at a time and combine

the colors in a separate pass. Overall, it would benefit this simulation if we

refactored the code for better data read/writes.

Second, I could explore better integration methods that would not have to deal with

hacks such as dynamically adjusting the timestamp based on the max velocity.

Specifically, it may be worth implementing a backwards Euler solver rather than the

current forward solver.

Third, I could implement the Kubelka-Munk (K-M) model of combining multiple

pigments. The KM model better models the physical properties of pigments. For

example, in most drawing applications, blending blue and yellow results in a muddy

gray; in real life, however, blue and yellow blend to create a similarly-saturated

green color. In the KM model, rendering depends on each pigments’ absorption and

scattering coefficients, which are functions of wavelength. Implementing the KM

model would enable the next step in rendering accurate, colorful, watercolors.
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